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We have recently developed 
a rate-dependent 
continuum damage 
model (Dominant 

Crack Algorithm, or, DCA) for brittle 
materials under dynamic loading 
[1]. The model is derived from the 
responses of an ensemble of penny-
shaped microcracks which are assumed 
to be randomly distributed within a 
statistically homogenous volume of 
a brittle material. It is assumed in the 
current model that the distribution of 
microcracks remains isotropic during 
loading. The main features of the 
model are: a) the damage tensor is 
derived from opening and shear of an 
ensemble of penny-shaped cracks with 
various orientations and sizes; b) the 
evolution of damage (through crack 
growth) is based on the energy-release 
rate for the dominant crack (having the 
most unstable orientation); and c) the 
damage surface, outside which material 
accumulates additional damage, is 
found by applying the generalized 
Griffith instability criterion to the 
dominant crack. The use of the energy-
release rate for damage evolution 
provides a physical means to introduce 
rate effects in our damage model. See [1] 
for details of the model.

To illustrate the features of the model, 
several standard load paths (isotropic, 
uniaxial strain, uniaxial stress, and 
pure-shear) have been simulated with 
the stand-alone driver program, which 
provides the model with a strain history. 
Figure 1 shows: a) the stress response, 
and b) the evolution of the average 
crack radius (damage), to an isotropic 
(e = e11i, s =-Pi), cyclic loading, with 
a strain rate ε11 = 105/s. The model 
material is a SiC ceramic [1]. The 
material is initially stress-free (point 

A) and is first loaded up to a tensile 
strain of 0.01 (C), then unloaded back 
to zero strain (A) and reverse loaded 
(compression) to a strain of 
ε11 = -0.0005 (D), and finally reloaded to 
a tensile strain of 0.0195 (E). The initial 
loading path (A-A’-B-C) begins with an 
elastic response A-A’, with the slightly 
damaged modulus corresponding to the 
initial crack size c0 = 14mm. When the 
stress reaches the initial damage surface 
(A’), initiating crack growth, this 
causes the damage surface to contract 
with further straining. Though the 
size of the damage surface starts to 
decrease immediately due to crack 
growth, the stress level in the material 
still increases with strain until a peak 
value (B) is reached. This is because 
the rate of damage accumulation, 
which is proportional to the square of 
the crack size, is small when the crack 
size is small, and the inelastic strain 
rate due to the crack growth is too 
small to influence the total strain rate 
significantly. Consequently, the response 
remains “strain-hardening” (A’-B). 
Because εgr  (the inelastic strain rate due 
to crack growth) increases with crack 
size and distance from the stress state 
to the damage surface, for a given total 
strain rate ε, the inelastic strain rate εgr 
eventually approaches the total strain 
rate and the material response changes 
from hardening to softening (B-C). 

The unloading path (C-C’-A) begins 
at C and, because the stress state is 
outside the damage surface, crack 
growth continues until the stress unloads 
enough to reach the surface (point C’). 
From C’, the material unloads elastically 
(with the damaged modulus) back to 
the origin (A), where both the matrix 
strain and crack strain are zero, and all 
the cracks are completely closed. The 
segment A-D corresponds to reverse 
loading (hydrostatic compression) of the 
damaged material with the crack size 
attained at  C’(c1 = c’ ≈ 10c0). Because the 
cracks remain closed under compression, 
damage accumulated in the material is 
deactivated (cracks of size c1 are still 
present). Consequently, the material 
assumes the original (undamaged) 
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stiffness. The reloading path (D-A-C’-E) 
starts from D and continues elastically 
with the undamaged stiffness back 
to the origin (A). On further loading, 
the cracks (with the increased size c1 ) 
open under tension and the damage, 
which has been accumulated at C’, 
becomes active again. Consequently, 
the reloading path follows the segment 
A-C’. The path intersects the damage 
surface at point C’, and the crack size 
again increases along the path (C’-E). 
The stress state is outside the damage 
surface due to rate effects. 

It is shown in Fig. 1(b) that the cracks 
are initially stable when the stress level 
is low (A-A’), become unstable at A’, 
and grow rapidly at first due to the 
high values of energy release rate, then 
slowly as the stress level drops. On 
unloading, the cracks continue to grow 
slightly (C-C’), and then arrest and
remain stable (the stress state is inside 
the damage surface). During reloading, 
the cracks remain stable (D-C’) until 
the stress reaches the damage surface 
again at point C’. During the rest of the 
reloading path (C’- E’), cracks continue 
to grow.

For more information contact 
Ken Zuo at zuo@lanl.gov.
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Fig. 1.
The predicted 
response under iso-
tropic, cyclic load-
ing: a) The pressure-
strain response; 
and b) Evolution 
of the crack size as 
a function of the 
strain.
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